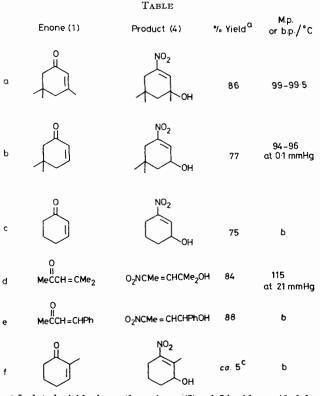

Novel Synthesis of γ -Hydroxy- α -nitro-olefins

By TETSUYOSHI TAKAMOTO*, YUTAKA IKEDA, YOSHIFUSA TACHIMORI, AKINORI SETA, and ROKURO SUDOH (Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan)


Summary Treatment of α -unsubstituted $\alpha\beta$ -epoxyketoximes with trifluoroperoxyacetic acid affords the corresponding γ -hydroxy- α -nitro-olefins in high yields.

THE nitro group is important in organic synthesis since it activates a neighbouring C-H bond for aldol or Michael reactions and can also be converted into useful functions such as NH₂ or C:O.¹ In addition, the nucleophilic α -carbon atom of nitroalkanes is essentially equivalent to an electrophilic carbonyl carbon atom when the conversion C-nitro \rightarrow carbonyl under mild conditions is available.² It is thus important to develop procedures for the ready interconversion of nitro and carbonyl functions.

Emmons *et al.* have reported³ the oxidative conversion of isolated carbonyl groups into nitro functions *via* oximes using trifluoroperoxyacetic acid, and we have applied this method successfully to carbohydrates.⁴ We now report a novel method for the transformation of $\alpha\beta$ -unsaturated carbonyl compounds to γ -hydroxy- α -nitro-olefins using this oxidation procedure at the final step of the sequence in the Scheme.

The chromatographically and spectroscopically homogeneous oximes (3) obtained from the $\alpha\beta$ -epoxyketones[†] (2) in 90–95% yields by Corey's procedure⁵ were treated with trifluoroperoxyacetic acid³ (1.5-3 equiv.) in acetonitrile in the presence of NaHCO₃ (6 equiv.) and urea (0.3 equiv.) at 0 °C for 30 min to give the γ -hydroxy- α -nitro-olefins (4) in high yields (Table). The products (4a-f) gave satisfactory microanalytical data, i.r. absorption bands at

^a Isolated yields from the oximes (3). ^b Liquid; purified by silica gel column chromatography. ^c Minor product; see text.

† Epoxidation of the $\alpha\beta$ -unsaturated ketones (1) was carried out by reaction with alkaline hydrogen peroxide according to the reported procedure: Org. Synth., 1963, Coll. Vol. 4, 552.

3300 (OH) and 1520 cm^{-1} (NO₂) and a characteristic ¹H n.m.r. signal in the conjugated olefinic region with small long-range coupling constants and an alcoholic proton (disappeared on addition of D₂O). The possible nitroepoxide or nitronic acid intermediates shown in the Scheme could not be detected spectroscopically or chromatographically.

Oxidation of the α -substituted oxime (3f) was complicated, however, and the main product, which has not yet

Further examination of α -substituted derivatives is thus necessary, but, apart from such compounds, the method appears to be generally applicable to $\alpha\beta$ -unsaturated carbonyl compounds.

(Received, 10th January 1978; Com. 022.)

¹ For a review of the chemistry of nitro groups, see 'The Chemistry of Nitro and Nitroso Groups,' ed. H. Feuer, Interscience,

¹ For a review of the chemistry of nitro groups, see The Chemistry of Nitro and Nitroso Groups, ed. H. Feuer, interscience, New York, Part 1, 1969, Part 2, 1970.
² J. E. McMurry and J. Melton, J. Org. Chem., 1973, 38, 4367; T.-L. Ho and C. M. Wong, Synthesis, 1974, 196; A. McKillop and R. J. Kobylecki, Tetrahedron, 1974, 30, 1365; R. Kirchhoff, Tetrahedron Letters, 1976, 2533, and references cited therein.
³ W. D. Emmons and A. S. Pagano, J. Amer. Chem. Soc., 1955, 77, 4557.
⁴ T. Takamoto and R. Sudoh, Bull. Chem. Soc. Japan, 1975, 48, 3413, and other papers in this series.
⁵ E. J. Corey, L. S. Melvin, Jr., and M. F. Haslanger, Tetrahedron Letters, 1975, 3117.